Part Number Hot Search : 
AUG20C 7323600 FKI07174 56F8036 FDC606P 93C45 MIW3017 3900M
Product Description
Full Text Search
 

To Download LT1498 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 LT1498/LT1499 10MHz, 6V/s, Dual/Quad Rail-to-Rail Input and Output Precision C-Load Op Amps
FEATURES
s s s s s s s s s s s s s s
DESCRIPTION
The LT (R)1498/LT1499 are dual/quad, rail-to-rail input and output precision C-LoadTM op amps with a 10MHz gainbandwidth product and a 6V/s slew rate. The LT1498/LT1499 are designed to maximize input dynamic range by delivering precision performance over the full supply voltage. Using a patented technique, both input stages of the LT1498/LT1499 are trimmed, one at the negative supply and the other at the positive supply. The resulting guaranteed common mode rejection is much better than other rail-to-rail input op amps. When used as a unity-gain buffer in front of single supply 12-bit A-to-D converters, the LT1498/LT1499 are guaranteed to add less than 1LSB of error even in single 3V supply systems. With 110dB of supply rejection, the LT1498/LT1499 maintain their performance over a supply range of 2.2V to 36V and are specified for 3V, 5V and 15V supplies. The inputs can be driven beyond the supplies without damage or phase reversal of the output. These op amps remain stable while driving capacitive loads up to 10,000pF. The LT1498 is available with the standard dual op amp configuration in 8-pin PDIP and SO packaging. The LT1499 features the standard quad op amp configuration and is available in a 14-pin plastic SO package. These devices can be used as plug-in replacements for many standard op amps to improve input/output range and precision.
Frequency Response
10 0 -10 - 20 - 30
GAIN (dB) 6.81k 100pF 5.23k 47pF V+
Rail-to-Rail Input and Output 475V Max VOS from V + to V - Gain-Bandwidth Product: 10MHz Slew Rate: 6V/s Low Supply Current per Amplifier: 1.7mA Input Offset Current: 50nA Max Input Bias Current: 500nA Max Open-Loop Gain: 1000V/mV Min Low Input Noise Voltage: 12nV/Hz Typ Wide Supply Range: 2.2V to 15V Large Output Drive Current: 30mA Stable for Capacitive Loads Up to 10,000pF Dual in 8-Pin PDIP and SO Package Quad in Narrow 14-Pin SO
APPLICATIONS
s s s s s
Driving A-to-D Converters Active Filters Rail-to-Rail Buffer Amplifiers Low Voltage Signal Processing Battery-Powered Systems
, LTC and LT are registered trademarks of Linear Technology Corporation. C-Load is a trademark of Linear Technology Corporation.
TYPICAL APPLICATION
Single Supply 100kHz 4th Order Butterworth Filter
VIN 330pF
1/2 LT1498
1000pF
V +/2
+
-
+
-
6.81k
11.3k
5.23k
10.2k
1/2 LT1498
VOUT
-100
1498 TA01
-110 100
U
U
U
VIN = 2.7VP-P V + = 3V
- 40 - 50 - 60 -70 - 80 - 90
1k
100k 10k FREQUENCY (Hz)
1M
10M
1498 TA02
1
LT1498/LT1499
ABSOLUTE MAXIMUM RATINGS
Total Supply Voltage (V + to V -) ............................. 36V Input Current ..................................................... 10mA Output Short-Circuit Duration (Note 1) ........ Continuous Operating Temperature Range ............... - 40C to 85C Specified Temperature Range (Note 3) .... - 40C to 85C Junction Temperature .......................................... 150C Storage Temperature Range ................. - 65C to 150C Lead Temperature (Soldering, 10 sec).................. 300C
PACKAGE/ORDER INFORMATION
TOP VIEW OUT A 1 - IN A 2 + IN A 3 V- 4 N8 PACKAGE 8-LEAD PDIP
A B
ORDER PART NUMBER
8 7 6 5 V+ OUT B - IN B + IN B
LT1498CN8 LT1498CS8 S8 PART MARKING 1498
S8 PACKAGE 8-LEAD PLASTIC SO
TJMAX = 150C, JA = 130C/ W (N8) TJMAX = 150C, JA = 190C/ W (S8)
Consult factory for Military and Industrial grade parts.
ELECTRICAL CHARACTERISTICS
TA = 25C, VS = 5V,0V; VS = 3V,0V; VCM = VOUT = half supply, unless otherwise noted.
SYMBOL PARAMETER VOS VOS IB IB Input Offset Voltage Input Offset Voltage Shift Input Bias Current Input Bias Current Shift Input Bias Current Match (Channel-to-Channel) IOS IOS en in CIN AVOL Input Offset Current Input Offset Current Shift Input Noise Voltage Input Noise Voltage Density Input Noise Current Density Input Capacitance Large-Signal Voltage Gain VS = 5V, VO = 75mV to 4.8V, RL = 10k VS = 3V, VO = 75mV to 2.8V, RL = 10k 600 500 CONDITIONS VCM = V + VCM = V - VCM = V - to V + VCM = VCM = V - VCM = V - to V + VCM = VCM = V - (Note 4) VCM = V + VCM = V - VCM = V - to V + 0.1Hz to 10Hz f = 1kHz f = 1kHz V + (Note 4) 0 - 100 V+ 0 - 500 MIN TYP 150 150 150 200 250 - 250 500 10 - 10 5 5 10 400 12 0.3 5 3800 2000 MAX 475 475 425 750 500 0 1000 100 0 50 50 100 UNITS V V V V nA nA nA nA nA nA nA nA nVP-P nV/Hz pA/Hz pF V/mV V/mV
Input Offset Voltage Match (Channel-to-Channel) VCM = V +, V - (Note 4)
2
U
U
W
WW U
W
TOP VIEW OUTA 1 - IN A 2 + IN A 3 V+ 4 + IN B 5 - IN B 6 OUT B 7
B C A D
14 OUT D 13 - IN D 12 + IN D 11 V - 10 + IN C 9 8 - IN C OUT C
ORDER PART NUMBER LT1499CS
S PACKAGE 14-LEAD PLASTIC SO
TJMAX = 150C, JA = 150C/ W
LT1498/LT1499
ELECTRICAL CHARACTERISTICS
TA = 25C, VS = 5V,0V; VS = 3V,0V; VCM = VOUT = half supply, unless otherwise noted.
SYMBOL PARAMETER CMRR Common Mode Rejection Ratio CMRR Match (Channel-to-Channel) (Note 4) PSRR VOL Power Supply Rejection Ratio PSRR Match (Channel-to-Channel) (Note 4) Output Voltage Swing (Low) (Note 5) CONDITIONS VS = 5V, VCM = V - to V + VS = 3V, VCM = V - to V + VS = 5V, VCM = V - to V + VS = 3V, VCM = V - to V + VS = 2.2V to 12V, VCM = VO = 0.5V VS = 2.2V to 12V, VCM = VO = 0.5V No Load ISINK = 0.5mA ISINK = 2.5mA No Load ISOURCE = 0.5mA ISOURCE = 2.5mA VS = 5V VS = 3V 12.5 12.0 6.8 VS = 5V, AV = - 1, RL = Open, VO = 4V VS = 3V, AV = - 1, RL = Open 2.6 2.3 MIN 81 76 75 70 88 82 TYP 90 86 91 86 105 103 14 35 90 2.5 50 140 24 19 1.7 10.5 4.5 4.0 2.2 30 70 200 10 100 250 MAX UNITS dB dB dB dB dB dB mV mV mV mV mV mV mA mA mA MHz V/s V/s
VOH
Output Voltage Swing (High) (Note 5)
ISC IS GBW SR
Short-Circuit Current Supply Current per Amplifier Gain-Bandwidth Product (Note 6) Slew Rate (Note 7)
0C < TA < 70C, VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, unless otherwise noted.
SYMBOL PARAMETER VOS VOS TC VOS IB IB Input Offset Voltage Input Offset Voltage Drift (Note 2) VCM = V + Input Offset Voltage Shift Input Bias Current Input Bias Current Shift Input Bias Current Match (Channel-to-Channel) IOS IOS AVOL CMRR Input Offset Current Input Offset Current Shift Large-Signal Voltage Gain Common Mode Rejection Ratio CMRR Match (Channel-to-Channel) (Note 4) PSRR Power Supply Rejection Ratio PSRR Match (Channel-to-Channel) (Note 4) VCM = V - + 0.1V to V + V - + 0.1V, V + (Note 4) VCM = V + VCM = V - + 0.1V VCM = V - + 0.1V to V + VCM = VCM = V - + 0.1V (Note 4) VCM = V + VCM = V - + 0.1V VCM = V - + 0.1V to V + VS = 5V, VO = 75mV to 4.8V, RL = 10k VS = 3V, VO = 75mV to 2.8V, RL = 10k VS = 5V, VCM = V - + 0.1V to V + VS = 3V, VCM = V - + 0.1V to V + VS = 5V, VCM = V - + 0.1V to V + VS = 3V, VCM = V - + 0.1V to V + VS = 2.3V to 12V, VCM = VO = 0.5V VS = 2.3V to 12V, VCM = VO = 0.5V V + (Note 4) Input Offset Voltage Match (Channel-to-Channel) VCM = CONDITIONS VCM = V + VCM = V - + 0.1V
q q q q q q q q q q q q q q q q q q q q q q
MIN
TYP 175 175 0.5 1.5 170 200
MAX 650 650 2.5 4.0 600 900 600 0 1200 170 0 85 85 170
UNITS V V V/C V/C V V nA nA nA nA nA nA nA nA V/mV V/mV dB dB dB dB dB dB
0 - 600 0 - 170
275 - 275 550 15 - 15 10 10 20
500 400 78 73 74 69 86 80
2500 2000 89 85 90 86 102 102
3
LT1498/LT1499
ELECTRICAL CHARACTERISTICS
0C < TA < 70C, VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, unless otherwise noted.
SYMBOL PARAMETER VOL Output Voltage Swing (Low) (Note 5) CONDITIONS No Load ISINK = 0.5mA ISINK = 2.5mA No Load ISOURCE = 0.5mA ISOURCE = 2.5mA VS = 5V VS = 3V
q q q q q q q q q q
MIN
TYP 17 40 110 3.5 55 160
MAX 35 80 220 15 120 300
UNITS mV mV mV mV mV mV mA mA
VOH
Output Voltage Swing (High) (Note 5)
ISC IS GBW SR
Short-Circuit Current Supply Current per Amplifier Gain-Bandwidth Product (Note 6) Slew Rate (Note 7)
12 10 6.1 2.5 2.2
23 20 1.9 9 4.0 3.5 2.6
mA MHz V/s V/s
VS = 5V, AV = -1, RL = Open, VO = 4V VS = 3V, AV = -1, RL = Open
q q
- 40C < TA < 85C, VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, unless otherwise noted. (Note 3)
SYMBOL PARAMETER VOS VOS TC VOS IB IB Input Offset Voltage Input Offset Voltage Drift (Note 2) VCM = V + Input Offset Voltage Shift Input Bias Current Input Bias Current Shift Input Bias Current Match (Channel-to-Channel) IOS IOS AVOL CMRR Input Offset Current Input Offset Current Shift Large-Signal Voltage Gain Common Mode Rejection Ratio CMRR Match (Channel-to-Channel) (Note 4) PSRR VOL Power Supply Rejection Ratio PSRR Match (Channel-to-Channel) (Note 4) Output Voltage Swing (Low) (Note 5) VCM = V - + 0.1V to V + V - + 0.1V, V + (Note 4) VCM = V + VCM = V - + 0.1V VCM = V - + 0.1V to V + VCM = V + (Note 4) VCM = V - + 0.1V (Note 4) VCM = V + VCM = V - + 0.1V VCM = V - + 0.1V to V + VS = 5V, VO = 75mV to 4.8V, RL = 10k VS = 3V, VO = 75mV to 2.8V, RL = 10k VS = 5V, VCM = V - + 0.1V to V + VS = 3V, VCM = V - + 0.1V to V + VS = 5V, VCM = V - + 0.1V to V + VS = 3V, VCM = V - + 0.1V to V + VS = 2.5V to 12V, VCM = VO = 0.5V VS = 2.5V to 12V, VCM = VO = 0.5V No Load ISINK = 0.5mA ISINK = 2.5mA No Load ISOURCE = 0.5mA ISOURCE = 2.5mA Input Offset Voltage Match (Channel-to-Channel) VCM = CONDITIONS VCM = VCM = V+ V - + 0.1V
q q q q q q q q q q q q q q q q q q q q q q q q q q q q
MIN
TYP 250 250 0.5 1.5 250 300
MAX 750 750 2.5 4.0 650 1500 750 0 1500 180 0 90 90 180
UNITS V V V/C V/C V V nA nA nA nA nA nA nA nA V/mV V/mV dB dB dB dB dB dB
0 - 750 0 - 180
350 - 350 700 30 - 30 15 15 30
400 300 77 73 72 69 86 80
2500 2000 86 81 86 83 100 100 18 45 110 3.5 60 170 40 80 220 15 120 300
mV mV mV mV mV mV
VOH
Output Voltage Swing (High) (Note 5)
4
LT1498/LT1499
ELECTRICAL CHARACTERISTICS
- 40C < TA < 85C, VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, unless otherwise noted. (Note 3)
SYMBOL PARAMETER ISC IS GBW SR Short-Circuit Current Supply Current per Amplifier Gain-Bandwidth Product (Note 6) Slew Rate (Note 7) VS = 5V, AV = -1, RL = Open, VO = 4V VS = 3V, AV = -1, RL = Open CONDITIONS VS = 5V VS = 3V
q q q q q q
MIN 7.5 7.5 5.8 2.2 1.9
TYP 15 15 2.0 8.5 3.6 3.2
MAX
UNITS mA mA
2.7
mA MHz V/s V/s
TA = 25C, VS = 15V, VCM = 0V, VOUT = 0V, unless otherwise noted.
SYMBOL PARAMETER VOS VOS IB IB Input Offset Voltage Input Offset Voltage Shift Input Bias Current Input Bias Current Shift Input Bias Current Match (Channel-to-Channel) IOS IOS en in AVOL Input Offset Current Input Offset Current Shift Input Noise Voltage Input Noise Voltage Density Input Noise Current Density Large-Signal Voltage Gain Channel Separation CMRR PSRR VOL Common-Mode Rejection Ratio CMRR Match (Channel-to-Channel) (Note 4) Power Supply Rejection Ratio PSRR Match (Channel-to-Channel) (Note 4) Output Voltage Swing (Low) (Note 5) CONDITIONS VCM = VCM = V - VCM = V - to V + V +, V - (Note 4) 0 - 550 0 - 120 VCM = V + VCM = V - VCM = V - to V + VCM = VCM = V - (Note 4) VCM = V + VCM = V - VCM = V - to V + 0.1Hz to 10Hz f = 1kHz f = 1kHz VO = - 14.5V to 14.5V, RL = 10k VO = - 10V to 10V, RL = 2k VO = - 10V to 10V, RL = 2k VCM = VCM = V - to V + V - to V + 1000 500 116 93 87 89 83 V + (Note 4) V+ MIN TYP 200 200 150 250 250 - 250 500 12 - 12 6 6 12 400 12 0.3 5200 2300 130 106 103 110 105 18 40 230 2.5 55 420 15 6.8 AV = - 1, RL = Open, VO = 10V Measure at VO = 5V 3.5 30 1.8 10.5 6 2.5 30 80 500 10 120 800 MAX 800 800 650 1400 550 0 1100 120 0 60 60 120 UNITS V V V V nA nA nA nA nA nA nA nA nVP-P nV/Hz pA/Hz V/mV V/mV dB dB dB dB dB mV mV mV mV mV mV mA mA MHz V/s
Input Offset Voltage Match (Channel-to-Channel) VCM =
VS = 5V to 15V VS = 5V to 15V No Load ISINK = 0.5mA ISINK = 10mA No Load ISINK = 0.5mA ISINK = 10mA
VOH
Output Voltage Swing (High) (Note 5)
ISC IS GBW SR
Short-Circuit Current Supply Current per Amplifier Gain-Bandwidth Product (Note 6) Slew Rate
5
LT1498/LT1499
ELECTRICAL CHARACTERISTICS
0C < TA < 70C, VS = 15V, VCM = 0V, VOUT = 0V, unless otherwise noted.
SYMBOL PARAMETER VOS VOS TC VOS IB IB Input Offset Voltage Input Offset Voltage Drift (Note 2) VCM = V + Input Offset Voltage Shift Input Bias Current Input Bias Current Shift Input Bias Current Match (Channel-to-Channel) IOS IOS AVOL Input Offset Current Input Offset Current Shift Large-Signal Voltage Gain Channel Separation CMRR PSRR VOL Common Mode Rejection Ratio CMRR Match (Channel-to-Channel) (Note 4) Power Supply Rejection Ratio PSRR Match (Channel-to-Channel) (Note 4) Output Voltage Swing (Low) (Note 5) VCM = V - + 0.1V to V + V - + 0.1V, V + (Note 4) VCM = V + VCM = V - + 0.1V VCM = V - + 0.1V to V + VCM = VCM = V - + 0.1V (Note 4) VCM = V + VCM = V - + 0.1V VCM = V - + 0.1V to V + VO = - 14.5V to 14.5V, RL = 10k VO = - 10V to 10V, RL = 2k VO = - 10V to 10V, RL = 2k VCM = VCM = V - + 0.1V to V + V - + 0.1V to V + V + (Note 4) Input Offset Voltage Match (Channel-to-Channel) VCM = CONDITIONS VCM = V + VCM = V - + 0.1V
q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q
MIN
TYP 200 200 1.0 2.0 200 350
MAX 900 900 3.5 5.0 750 1500 675 0 1350 180 0 90 90 180
UNITS V V V/C V/C V V nA nA nA nA nA nA nA nA V/mV V/mV dB dB dB dB dB
0 - 675 0 - 180
300 - 300 600 20 - 20 15 15 30
900 400 112 92 86 88 82
5000 2000 125 103 103 103 103 18 45 270 3.5 60 480 40 90 520 15 120 1000 2.8
VS = 5V to 15V VS = 5V to 15V No Load ISINK = 0.5mA ISINK = 10mA No Load ISOURCE = 0.5mA ISOURCE = 10mA
mV mV mV mV mV mV mA mA MHz V/s
VOH
Output Voltage Swing (High) (Note 5)
ISC IS GBW SR
Short-Circuit Current Supply Current per Amplifier Gain-Bandwidth Product (Note 6) Slew Rate AV = - 1, RL = Open, VO = 10V Measured at VO = 5V
12 6.1 3.4
28 1.9 9 5.3
q
6
LT1498/LT1499
ELECTRICAL CHARACTERISTICS
- 40C < TA < 85C, VS = 15V, VCM = 0V, VOUT = 0V, unless otherwise noted. (Note 3)
SYMBOL PARAMETER VOS VOS TC VOS IB IB Input Offset Voltage Input Offset Voltage Drift (Note 2) VCM = V + Input Offset Voltage Shift Input Bias Current Input Bias Current Shift Input Bias Current Match (Channel-to-Channel) IOS IOS AVOL Input Offset Current Input Offset Current Shift Large-Signal Voltage Gain Channel Separation CMRR PSRR VOL Common Mode Rejection Ratio CMRR Match (Channel-to-Channel) (Note 4) Power Supply Rejection Ratio PSRR Match (Channel-to-Channel) (Note 4) Output Voltage Swing (Low) (Note 5) VCM = V - + 0.1V to V + V - + 0.1V, V + (Note 4) VCM = V + VCM = V - + 0.1V VCM = V - + 0.1V to V + VCM = VCM = V - + 0.1V (Note 4) VCM = V + VCM = V - + 0.1V VCM = V - + 0.1V to V + VO = - 14.5V to 14.5V, RL = 10k VO = - 10V to 10V, RL = 2k VO = - 10V to 10V, RL = 2k VCM = VCM = V - + 0.1V to V + V - + 0.1V to V + V + (Note 4) Input Offset Voltage Match (Channel-to-Channel) VCM = CONDITIONS VCM = V + VCM = V - + 0.1V
q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q
MIN
TYP 300 300 1.0 2.0 250 350
MAX 950 950 3.5 5.0 850 1800 800 0 1600 200 0 100 100 200
UNITS V V V/C V/C V V nA nA nA nA nA nA nA nA V/mV V/mV dB dB dB dB dB
0 - 800 0 - 200
350 - 350 700 20 - 20 15 15 30
800 350 110 90 86 88 82
5000 2000 120 101 100 100 100 25 50 275 3.5 65 500 50 100 520 15 120 1000 3.0
VS = 5V to 15V VS = 5V to 15V No Load ISINK = 0.5mA ISINK = 10mA No Load ISOURCE = 0.5mA ISOURCE = 10mA
mV mV mV mV mV mV mA mA MHz V/s
VOH
Output Voltage Swing (High) (Note 5)
ISC IS GBW SR
Short-Circuit Current Supply Current per Amplifier Gain-Bandwidth Product (Note 6) Slew Rate AV = - 1, RL = Open, VO = 10V, Measure at VO = 5V
10 5.8 3
18 2.0 8.5 4.75
q
The q denotes specifications that apply over the full operating temperature range. Note 1: A heat sink may be required to keep the junction temperature below the absolute maximum rating when the output is shorted indefinitely. Note 2: This parameter is not 100% tested. Note 3: The LT1498/LT1499 are designed, characterized and expected to meet these extended temperature limits, but are not tested at - 40C and 85C. Guaranteed I grade parts are available, consult factory.
Note 4: Matching parameters are the difference between amplifiers A and D and between B and C on the LT1499; between the two amplifiers on the LT1498. Note 5: Output voltage swings are measured between the output and power supply rails. Note 6: VS = 3V, VS = 15V GBW limit guaranteed by correlation to 5V tests. Note 7: VS = 3V, VS = 5V slew rate limit guaranteed by correlation to 15V tests.
7
LT1498/LT1499 TYPICAL PERFORMANCE CHARACTERISTICS
VOS Distribution, VCM = 0V (PNP Stage)
25 LT1498: N8, S8 PACKAGES LT1499: S14 PACKAGE VS = 5V, 0V VCM = 0V
20
PERCENT OF UNITS (%)
PERCENT OF UNITS (%)
15
15
PERCENT OF UNITS (%)
10
5
0 - 500
-300 100 300 -100 INPUT OFFSET VOLTAGE (V)
Supply Current vs Supply Voltage
2.0
2.0
SUPPLY CURRENT PER AMPLIFIER (mA)
SUPPLY CURRENT PER AMPLIFIER (mA)
TA = 125C TA = 25C 1.5 TA = - 55C 1.0
1.5
INPUT BIAS CURRENT (nA)
0.5
0
0
4
8 12 16 20 24 28 32 TOTAL SUPPLY VOLTAGE (V)
Input Bias Current vs Temperature
400 300 VS = 15V VCM = 15V
SATURATION VOLTAGE (mV)
200 NPN ACTIVE 100 0 -100 PNP ACTIVE - 200 - 300
VS = 5V, 0V VCM = 5V
100
SATURATION VOLTAGE (mV)
INPUT BIAS CURRENT (nA)
VS = 15V VCM = - 15V VS = 5V, 0V VCM = 0V
- 400 - 50 - 35 - 20 - 5 10 25 40 55 70 85 100 TEMPERATURE (C)
1498/99 G07
8
UW
1498/99 G01
VOS Distribution VCM = 5V (NPN Stage)
25 LT1498: N8, S8 PACKAGES LT1499: S14 PACKAGE VS = 5V, 0V VCM = 5V
25
VOS Shift for VCM = 0V to 5V
LT1498: N8, S8 PACKAGES LT1499: S14 PACKAGE VS = 5V, 0V VCM = 0V TO 5V
20
20
15
10
10
5
5
500
0 - 500
-300 100 300 -100 INPUT OFFSET VOLTAGE (V)
500
1498/99 G02
0 - 500
-300 100 300 -100 INPUT OFFSET VOLTAGE (V)
500
1498/99 G02
Supply Current vs Temperature
400
VS = 15V VS = 5V, 0V
Input Bias Current vs Common Mode Voltage
VS = 5V, 0V 300 200 100 0 -100 TA = 125C TA = 25C TA = - 55C
1.0
0.5
- 200
- 300
0 - 50 -25 0 50 75 25 TEMPERATURE (C) 100 125
36
- 400 -2
-1
0 2 3 4 5 1 COMMON MODE VOLTAGE (V)
6
1498/99 G04
1498/99 G05
1498/99 G06
Output Saturation Voltage vs Load Current (Output High)
1000 1000
Output Saturation Voltage vs Load Current (Output Low)
100 TA = 25C TA = 125C 10 TA = - 55C
10 TA = - 55C TA = 125C TA = 25C 1 0.001 0.01 0.1 1 LOAD CURRENT (mA) 10
1498/99 G08
1 0.001
0.01 0.1 1 LOAD CURRENT (mA)
10
1498/99 G09
LT1498/LT1499 TYPICAL PERFORMANCE CHARACTERISTICS
Minimum Supply Voltage
300
CHANGE IN OFFSET VOLTAGE (V)
OUTPUT VOLTAGE (200nV/DIV)
250 200 150 100 TA = 85C 50 TA = 25C 0 1 TA = 70C NONFUNCTIONAL TA = - 55C 5
1498/99 G10
NOISE VOLTAGE (nV/Hz)
4 2 3 TOTAL SUPPLY VOLTAGE (V)
Noise Current Spectrum
10 9 CURRENT NOISE (pA/Hz) 8
VOLTAGE GAIN (dB)
60 50 40 30 20 10 0 -10 GAIN
144 108 72
PHASE SHIFT (DEG)
COMMON MODE REJECTION RATIO (dB)
VS = 5V, 0V
7 6 5 4 3 2 1 0 1 VCM = 2.5V PNP ACTIVE 10 100 FREQUENCY (Hz) 1000
1498/99 G13
VCM = 4V NPN ACTIVE
PSRR vs Frequency
90
POWER SUPPLY REJECTION RATIO (dB)
80 70
VS = 2.5V
GAIN BANDWIDTH (MHz)
16 14 12 10 8 6 4 2 GAIN BANDWIDTH PHASE MARGIN
80
PHASE MARGIN (DEG)
CHANNEL SEPARATION (dB)
60 POSITIVE SUPPLY 50 40 30 20 10 0 - 10 1 10 100 1000 FREQUENCY (kHz) 10000
1498/99 G16
NEGATIVE SUPPLY
UW
0.1Hz to 10Hz Output Voltage Noise
VS = 2.5V VCM = 0V
200 180 160 140 120 100 80 60 40 20 0
Noise Voltage Spectrum
VS = 5V, 0V
VCM = 2.5V PNP ACTIVE VCM = 4V NPN ACTIVE
0 TIME (1s/DIV)
10
1498/99 G11
1
10 100 FREQUENCY (Hz)
1000
1498/99 G12
Gain and Phase vs Frequency
70 RL = 10k VS = 1.5V VS = 15V PHASE 180 120 110 100 90 80 70 60 50 40 30 20
CMRR vs Frequency
36 0 - 36 - 72
VS = 15V VS = 2.5V
-108 -144 0.1 1 10 FREQUENCY (MHz) -180 100
1498/99 G14
- 20 - 30 0.01
1
10
100 1000 FREQUENCY (kHz)
10000
1498/99 G15
Gain Bandwidth and Phase Margin vs Supply Voltage
20 18 100 90
- 50 - 60 - 70 - 80 - 90 -100 -110 -120 -130 -140
Channel Separation vs Frequency
VS = 15V VOUT = 1VP-P RL = 2k
70 60 50 40 30 20 10
0 0 5 25 15 20 10 TOTAL SUPPLY VOLTAGE (V)
0 30
-150 0.01
0.1
1 10 FREQUENCY (kHz)
100
1000
1498/99 G17
1498/99 G18
9
LT1498/LT1499 TYPICAL PERFORMANCE CHARACTERISTICS
Capacitive Load Handling
70 60 50 VS = 5V, 0V AV = 1 RL = 1k
9 8
SLEW RATE (V/s)
OVERSHOOT (%)
7 6 5 4 3 0 4
OUTPUT STEP (V)
40 30 20 10 0 10 100 1000 10000 CAPACITIVE LOAD (pF) 100000
1498/99 G19
Open-Loop Gain
20 15 VS = 15V 4 3 INPUT VOLTAGE (V) 2 1 0 -1 -2 -3 15 20 -4
CHANGE IN OFFSET VOLTAGE (V)
INPUT VOLTAGE (V)
10 5 0 -5 -10 -15 - 20 0 5 -20 -15 -10 - 5 10 OUTPUT VOLTAGE (V) RL = 2k RL = 10k
Total Harmonic Distortion + Noise vs Peak-to-Peak Voltage
1 f = 1kHz RL = 10k AV = 1 VS = 1.5V 0.01 AV = -1 VS = 1.5V AV = 1 VS = 2.5V AV = -1 VS = 2.5V
1
0.1
THD + NOISE (%)
THD + NOISE (%)
0.001
0.0001 0 1 2 3 4 INPUT VOLTAGE (VP-P) 5
1498/99 G25
10
UW
Slew Rate vs Supply Voltage
10 VOUT = 80% OF VS AV = -1 RISING EDGE 8 6 4 2 0 -2 -4 -6 -8 -10 8 12 16 20 24 28 32 TOTAL SUPPLY VOLTAGE (V) 36
Output Step vs Settling Time to 0.01%
VS = 15V NONINVERTING INVERTING
FALLING EDGE
INVERTING NONINVERTING
1.5
3.0 2.5 2.0 SETTLING TIME (s)
3.5
1498/99 G21
1498/99 G20
Open-Loop Gain
VS = 5V, 0V 10
Warm-Up Drift vs Time
S8 PACKAGE, VS = 2.5V 0 N8 PACKAGE, VS = 2.5V LT1499CS, VS = 2.5V S8 PACKAGE, VS = 15V -20 N8 PACKAGE, VS = 15V -30 LT1499CS, VS = 15V - 40 0 20 40 60 80 100 120 140 160 TIME AFTER POWER-UP (SEC)
1498/99 G24
RL = 2k RL = 10k
-10
0
1
4 3 OUTPUT VOLTAGE (V)
2
5
6
1498/99 G22
1498/99 G23
Total Harmonic Distortion + Noise vs Frequency
VS = 1.5V VIN = 2VP-P RL = 10k AV = 1
0.1
0.01
AV = -1
0.001 0.01
0.1
1 10 FREQUENCY (kHz)
100
1498/99 G26
LT1498/LT1499 TYPICAL PERFORMANCE CHARACTERISTICS
5V Small-Signal Response 5V Large-Signal Response
5mV/DIV
VS = 5V 200ns/DIV AV = 1 VIN = 20mVP-P AT 50kHz RL = 1k
1498/99 G27
1V/DIV
15V Small-Signal Response
5mV/DIV
VS = 15V 200ns/DIV AV = 1 VIN = 20mVP-P AT 50kHz RL = 1k
1498/99 G29
5V/DIV
APPLICATIONS INFORMATION
Rail-to-Rail Input and Output The LT1498/LT1499 are fully functional for an input and output signal range from the negative supply to the positive supply. Figure 1 shows a simplified schematic of the amplifier. The input stage consists of two differential amplifiers, a PNP stage (Q1/Q2) and an NPN stage (Q3/ Q4) which are active over different ranges of input common mode voltage. A complementary common emitter output stage (Q14/Q15) is employed allowing the output to swing from rail-to-rail. The devices are fabricated on Linear Technology's proprietary complementary bipolar process to ensure very similar DC and AC characteristics for the output devices (Q14/Q15). The PNP differential input pair is active for input common mode voltages, VCM, between the negative supply to approximately 1.3V below the positive supply. As VCM moves further toward the positive supply, the transistor Q5 will steer the tail current, I1, to the current mirror Q6/ Q7 activating the NPN differential pair, and the PNP differential pair becomes inactive for the rest of the input common mode range up to the positive supply. The output is configured with a pair of complementary common emitter stages that enables the output to swing from rail to rail. Capacitors C1 and C2 form local feedback loops that lower the output impedance at high frequencies.
U
W
UW
VS = 5V AV = 1 VIN = 4VP-P AT 10kHz RL = 1k
2s/DIV
1498/99 G28
15V Large-Signal Response
VS = 15V AV = 1 VIN = 20VP-P AT 10kHz RL = 1k
2s/DIV
1498/99 G30
U
U
11
LT1498/LT1499
APPLICATIONS INFORMATION
V+ R3 R4 R5 Q15
D1 + IN R6 Q5 D5 - IN R7 Q4 Q3 Q1 D3 D6 D2 VBIAS
Q7 V
-
Q6 R1 R2 Q14
1498/99 F01
Figure 1. LT1498 Simplified Schematic Diagram
Input Offset Voltage The offset voltage changes depending upon which input stage is active. The input offsets are random, but are trimmed to less than 475V. To maintain the precision characteristics of the amplifier, the change of VOS over the entire input common mode range (CMRR) is guaranteed to be less than 425V on a single 5V supply. Input Bias Current The input bias current polarity also depends on the input common mode voltage, as described in the previous section. When the PNP differential pair is active, the input bias currents flow out of the input pins; they flow in opposite direction when the NPN input stage is active. The offset error due to input bias current can be minimized by equalizing the noninverting and inverting input source impedances. This will reduce the error since the input offset currents are much less than the input bias currents. Overdrive Protection To prevent the output from reversing polarity when the input voltage exceeds the power supplies, two pair of crossing diodes D1 to D4 are employed. When the input
12
U
W
U
U
I1
Q11
Q12
Q13
C2
V- Q2 Q10 Q9 D4 Q8
CC
OUT
BUFFER AND OUTPUT BIAS C1
voltage exceeds either power supply by approximately 700mV, D1/D2 or D3/D4 will turn on, forcing the output to the proper polarity. For the phase reversal protection to work properly, the input current must be less than 5mA. If the amplifier is to be severely overdriven, an external resistor should be used to limit the overdrive current. Furthermore, the LT1498/LT1499's input stages are protected by a pair of back-to-back diodes, D5/D6. When a differential voltage of more than 0.7V is applied to the inputs, these diodes will turn on, preventing the Zener breakdown of the input transistors. The current in D5/D6 should be limited to less than 10mA. Internal resistors R6 and R7 (700 total) limit the input current for differential input signals of 7V or less. For larger input levels, a resistor in series with either or both inputs should be used to limit the current. Worst-case differential input voltage usually occurs when the output is shorted to ground. In addition, the amplifier is protected against ESD strikes up to 3kV on all pins. Capacitive Load The LT1498/LT1499 are designed for ease of use. The amplifier can drive a capacitive load of more than 10nF
LT1498/LT1499
APPLICATIONS INFORMATION
without oscillation at unity gain. When driving a heavy capacitive load, the bandwidth is reduced to maintain stability. Figures 2a and 2b illustrate the stability of the device for small-signal and large-signal conditions with capacitive loads. Both the small-signal and large-signal transient response with a 10nF capacitive load are well behaved. Feedback Components To minimize the loading effect of feedback, it is possible to use the high value feedback resistors to set the gain. However, care must be taken to insure that the pole formed by the feedback resistors and the total input capacitance at the inverting input does not degrade the stability of the amplifier. For instance, the LT1498/LT1499 in a noninverting gain of 2, set with two 30k resistors, will probably oscillate with 10pF total input capacitance (5pF input capacitance + 5pF board capacitance). The amplifier has a 2.5MHz crossing frequency and a 60 phase margin at 6dB of gain. The feedback resistors and the total input capacitance create a pole at 1.06MHz that induces 67 of phase shift at 2.5MHz! The solution is simple, either lower the value of the resistors or add a feedback capacitor of 10pF of more.
VS = 5V AV = 1
1498/99 F02a
TYPICAL APPLICATIONS N
1A Voltage Controlled Current Source
V+ 0.5
V+
1k
VIN
500pF
-
1k VIN 1/2 LT1498
100 Si9430DY
+
IOUT = V + - VIN 0.5 tr < 1s IOUT RL
1498/99 TA03
U
W
U
U
U
CL = 0pF
CL = 500pF
CL = 10nF
Figure 2a. LT1498 Small-Signal Response
CL = 0pF
CL = 500pF
CL = 10nF
VS = 5V AV = 1
1498/99 F02b
Figure 2b. LT1498 Large-Signal Response
1A Voltage Controlled Current Sink
V+ IOUT RL
1k
+
1/2 LT1498
100 Si9410DY 500pF 1k 0.5
1498/99 TA04
-
IOUT =
VIN 0.5 tr < 1s
13
LT1498/LT1499
TYPICAL APPLICATIONS N
Input Bias Current Cancellation
RG RF SIGNAL AMP VOUT
VIN
1M
22pF
1M
1498/99 TA05
INPUT BIAS CURRENT LESS THAN 50nA FOR 500mV VIN (V + - 500mV)
PACKAGE DESCRIPTION
Dimensions in inches (millimeters) unless otherwise noted. N8 Package 8-Lead PDIP (Narrow 0.300)
(LTC DWG # 05-08-1510)
0.400* (10.160) MAX 8 7 6 5
0.255 0.015* (6.477 0.381)
0.300 - 0.325 (7.620 - 8.255)
0.009 - 0.015 (0.229 - 0.381)
0.065 (1.651) TYP 0.005 (0.127) MIN 0.100 0.010 (2.540 0.254) 0.125 (3.175) MIN 0.018 0.003 (0.457 0.076) 0.015 (0.380) MIN
(
+0.025 0.325 -0.015 8.255 +0.635 -0.381
)
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)
14
+
-
U
U
1/2 LT1498
+
1/2 LT1498 CANCELLATION AMP
-
1
2
3
4 0.130 0.005 (3.302 0.127)
0.045 - 0.065 (1.143 - 1.651)
N8 0695
LT1498/LT1499
PACKAGE DESCRIPTION
0.010 - 0.020 x 45 (0.254 - 0.508) 0.008 - 0.010 (0.203 - 0.254) 0- 8 TYP
0.016 - 0.050 0.406 - 1.270 *DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE **DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE
0.010 - 0.020 x 45 (0.254 - 0.508) 0.008 - 0.010 (0.203 - 0.254) 0 - 8 TYP
0.016 - 0.050 0.406 - 1.270
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE **DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE
Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.
U
Dimensions in inches (millimeters) unless otherwise noted.
S8 Package 8-Lead Plastic Small Outline (Narrow 0.150)
(LTC DWG # 05-08-1610)
0.189 - 0.197* (4.801 - 5.004) 8 7 6 5
0.228 - 0.244 (5.791 - 6.197)
0.150 - 0.157** (3.810 - 3.988)
1
2
3
4
0.053 - 0.069 (1.346 - 1.752)
0.004 - 0.010 (0.101 - 0.254)
0.014 - 0.019 (0.355 - 0.483)
0.050 (1.270) TYP
SO8 0996
S Package 14-Lead Plastic Small Outline (Narrow 0.150)
(LTC DWG # 05-08-1610)
0.337 - 0.344* (8.560 - 8.738) 14 13 12 11 10 9 8
0.228 - 0.244 (5.791 - 6.197)
0.150 - 0.157** (3.810 - 3.988)
1
2
3
4
5
6
7
0.053 - 0.069 (1.346 - 1.752)
0.004 - 0.010 (0.101 - 0.254)
0.014 - 0.019 (0.355 - 0.483)
0.050 (1.270) TYP
S14 0695
15
LT1498/LT1499
TYPICAL APPLICATION
Bidirectional Current Sensor A bidirectional current sensor for battery-powered systems is shown in Figure 3. Two outputs are provided: one proportional to charge current, the other proportional to discharge current. The circuit takes advantage of the LT1498's rail-to-rail input range and its output phase reversal protection. During the charge cycle, the op amp A1 forces a voltage equal to (IL)(RSENSE) across RA. This
IL CHARGE VBATTERY DISCHARGE RA RSENSE 0.1 VBATTERY RA
RELATED PARTS
PART NUMBER LTC 1152 LT1211/LT1212 LT1213/LT1214 LT1215/LT1216 LT1366/LT1367 LT1490/LT1491
(R)
DESCRIPTON Rail-to-Rail Input and Output, Zero-Drift Op Amp Dual/Quad 14MHz, 7V/s, Single Supply Precision Op Amps Dual/Quad 28MHz, 12V/s, Single Supply Precision Op Amps Dual/Quad 23MHz, 50V/s, Single Supply Precision Op Amps Dual/Quad Precision, Rail-to-Rail Input and Output Op Amps Dual/Quad Micropower, Rail-to-Rail Input and Output Op Amps
16
Linear Technology Corporation
1630 McCarthy Blvd., Milpitas, CA 95035-7417 q (408) 432-1900 FAX: (408) 434-0507q TELEX: 499-3977 q www.linear-tech.com
U
voltage is then amplified at the Charge Out by the ratio of RB over RA. In this mode, the output of A2 remains high, keeping Q2 off and the Discharge Out low, even though the (+) input of A2 exceeds the positive power supply. During the discharge cycle, A2 and Q2 are active and the operation is similar to the charge cycle.
+
A2 1/2 LT1498
+
A1 1/2 LT1498
-
RA
RA
-
Q2 MTP23P06 DISCHARGE OUT RB
Q1 MTP23P06 CHARGE OUT RB VO = IL
RB R RA SENSE FOR RA = 1k, RB = 10k VO = 1V/A 1498/99 F03 IL
()
Figure 3. Bidirectional Current Sensor
COMMENTS High DC Accuracy, 10V VOS(MAX), 100nV/C Drift, 1MHz GBW, 1V/s Slew Rate, Max Supply Current 2.2mA Input Common Mode Includes Ground, 275V VOS(MAX), 6V/C Max Drift, Max Supply Current 1.8mA per Op Amp Input Common Mode Includes Ground, 275V VOS(MAX), 6V/C Max Drift, Max Supply Current 3.5mA per Op Amp Input Common Mode Includes Ground, 450V VOS(MAX), Max Supply Current 6.6mA per Op Amp 475V VOS(MAX), 400kHz GBW, 0.13V/s Slew Rate, Max Supply Current 520A per Op Amp Max Supply Current 50A per Op Amp, 200kHz GBW, 0.07V/s Slew Rate, Operates with Inputs 44V Above V - Independent of V +
14989f LT/TP 0397 7K * PRINTED IN USA
(c) LINEAR TECHNOLOGY CORPORATION 1996


▲Up To Search▲   

 
Price & Availability of LT1498

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X